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Critical withdrawal from a two-layer fluid through a line sink 
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Abstract. The problem of withdrawing water through a line sink from a region containing two homogenous layers of 
different density is considered. Assuming steady, irrotational flow of an ideal fluid, a nonlinear integral equation is 
derived and solved numerically. Confirmation of earlier research is given, and some new results obtained in which 
the interface between the two layers rises up and then enters the sink vertically from above, even when the sink is 
located above the undisturbed level of the interface. A diagram is presented which summarises the work on this 
problem to this time. 

I.  Introduct ion  

There  are many  examples  of  water  bodies  which are stratified in density. Water  s tored in 

reservoirs  is of ten  stratified i n t o  layers of  different  t empera tu re  or  salinity, and hence  

density,  by the act ion of  the wea ther  on the surface and the inflowing rivers. This 

stratification has a ra ther  irregular  s t ructure,  a l though it typically consists of  a reasonably  

well mixed surface layer several met res  thick, above  a sharp density interface,  which in turn 

lies above  a weakly  stratified lower  layer reaching down to the bo t t om [12]. 

Wate r  in power  stat ion cooling ponds ,  and water  in solar ponds  used for  power  genera t ion,  

are two examples  in which there  is a more  clearly defined layering of  the water  body.  

Cool ing  ponds  usually have a layer consisting of  warm,  recently used water ,  above  a cooler ,  

more  dense  layer. In solar ponds ,  power  is genera ted  by building a two-layer  system of  cold,  

fresh water  above  warm,  saline water.  The  lower  layer then traps the solar radiat ion and 

heats  up,  storing the energy.  A discussion of  the physics of  these water  bodies can be found  
in [12]. 

In all of  these examples ,  it is of  interest to  know the behaviour  of  the flow pat te rn  induced 

when water  is wi thdrawn.  In a reservoir  this knowledge  allows predict ion (and somet imes  

selection) of  water  quality,  while in a cooling pond  it allows the cooling process to be carr ied 

out  with max im um  efficiency by allowing some control  of  the t empera tu re  of  the wi thdrawn 

water .  Ene rgy  is extracted f rom a solar pond  by wi thdrawing water  f rom the hot ,  saline 

layer, and withdrawals  and inflows are used to maintain the most  efficient density gradient  
for  the collection and s torage of  energy  in the pond.  

The  work  presented  here  examines  the p rob lem of  withdrawal  th rough  a line sink f rom 

two distinct, h o m o g e n e o u s  layers separa ted  by a very sharp interface.  In reality, the water  

bodies  descr ibed may  not  have such a convenien t  s tructure,  and the actual si tuation may  be 

some combina t ion  of  the two- layer  case and the case of  withdrawal  f rom a fluid in which the 
density stratification is linear. The  latter p rob lem will not  be discussed here ,  but  a recent  
review of  this subject  can be found  in Imberge r  and Pat terson [15]. 

* Part of this work was carried out while the author was at the Centre for Water Research, University of Western 
Australia. 
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Apart  from improving fundamental understanding of the physics of withdrawal, the results 
can be implemented in numerical models for simulating density structure in lakes, reservoirs, 
cooling ponds and solar ponds, of the type discussed in [2], [8], [13], [14] and [19]. These 
models are extremely useful for developing reservoir management strategies and for 
forecasting the behaviour of water in proposed works. 

When water is withdrawn from a fluid consisting of two or more homogeneous layers of 
different density, separated by an interface, the withdrawn water will come from the layer 
adjacent to the point of removal until some threshold in flow rate is reached, after which the 
other two layers will begin to flow out through the sink. This threshold can be described 
most easily in terms of a dimensionless parameter ,  the Froude number,  

( q2 ]1/2 

where q is the discharge through the sink per unit width, h b is the depth of the lower layer of 
fluid, and g'  is (Ap/p)g where p is the density of the lower layer, Ap is the difference in 
density between the two layers, and g is the acceleration due to gravity. 

If the interface is assumed to be of infinitesimal thickness, the flow to be steady and 
irrotational, and the fluid to be inviscid and incompressible, it can be shown (Tuck and 
Vanden-Broeck [20]), that only two types of solution are possible beneath the threshold 
Froude number,  i.e. when only a single layer is flowing out through the sink. We shall 
suppose the sink to be in the lower layer, and hence this is the only layer from which water is 
being withdrawn at Froude numbers beneath the threshold value. 

The first solution type involves a stagnation point on the interface directly above the sink. 
Peregrine [18], Vanden-Broeck, Schwartz and Tuck [22], and Tuck and Vanden-Broeck [20], 
all computed solutions of this type for the case of a line sink, but had limited success as the 
Froude number was increased. It was suggested by their work that there exists a critical 
value of F above which such solutions do not exist. Recently, Hocking and Forbes [9], 
computed solutions with a stagnation point for the case of a 'layer' of infinite depth, for 
values of Froude number  up to 1.4. In this infinite depth case, the Froude number must be 
redefined as F, = (q/(g'h~)) 1/2, where h, is the depth of the sink beneath the level of the 
interface. No solutions of this type were found for values of the Froude number greater than 
this. 

Forbes and Hocking [5] have obtained solutions in the case of axisymmetric flow into a 
point sink, for values of F3, up to approximately 6.4. In three dimensions the Froude number 
is defined as ~ s  = (Q2/g'h~)) 1/2 where Q is the total flux into the sink. At F 3 ,  ~ = 6.4, they 
found a secondary stagnation point formed on the interface a small distance away from the 
primary point above the sink. As in the case of a line sink, no solutions were obtained for 
values of F3s larger than this. 

The second solution type has long been thought to characterise the threshold value of the 
Froude number,  above which water in the layer above the interface begins to be drawn out 
through the sink. In this flow, a downward cusp forms in the interface directly above the 
sink, as the interface is drawn down to enter the sink vertically (see Fig. 1). It is this type of 
solution, induced by the flow of a line sink, which is the major interest of the work described 
here. 

In the situation in which the lower layer (containing the sink) extends downward to 
infinity, it has been shown on numerous occasions (Craya [3], Tuck and Vanden-Broeck [20], 
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Fig. 1. Def in i t ion  ske tch  for the  p r o b l e m  u n d e r  cons ide ra t i on .  The  in te r face  shape  shown  was  c o m p u t e d  for the 
case h / h  b = 0.75 and  F =  1. 

Hocking [6]), for various different geometries, that solutions with this cusp exist only at a 
single value of the Froude number.  No solutions of this type have been found at values of F s 
slightly smaller, and none for values of F s slightly larger. This reinforced the belief that this 
solution characterised the threshold flow, and that at slightly larger values of F s the upper 
layer would also be drawn into the sink. 

Yih [24] speculated, however,  that when the lower layer is of finite depth solutions of this 
shape might exist for flows in the absence of gravity, i.e. at infinite values of Froude number,  
and hence that solutions at large but finite values of F would also exist. Solutions with 
infinite Froude number  were subsequently found by Collings [4], Vanden-Broeck and Keller 
[21], Hocking [7] and King and Bloor [7]. 

Vanden-Broeck and Keller [21] went further,  and used a series solution method to obtain 
solutions with a cusp for Froude numbers ranging from infinity down to a value greater than 
or equal to unity, in a fluid of finite depth, with the sink situated at various depths in the 
lower fluid (see Fig. 1). They suggested that further solutions with waves on the interface 
might exist for values of Froude number less than one, although they did not compute them. 
An extra branch of waveless solutions was found for Froude numbers less than one. For each 
of a range of small sink to bot tom depth ratios, a single cusped interface solution was 
obtained which proved to be unique for the ratio (see Fig. 4). This branch of solution 
contains the solution of Tuck and Vanden-Broeck [20] for a fluid of infinite depth. 

In the case of infinite depth, the results of Hocking and Forbes [9], who found stagnation 
point solutions for F, up to 1.4, and Tuck and Vanden-Broeck [20], who found a single 
cusped solution at F~ = 3.54, reveal the presence of a gap in the parameter  range. It is 
possible that some kind of unsteady transition flow exists in the range 1.4 < F s < 3.54. In a 
real situation, the question arises as to whether the drawdown could occur in this 'transition 
zone' ,  or even in the region of the breakdown of the stagnation point flows. Experimental  
work [10, 16] indicates that the drawdown Froude number is lower than that predicted by 
numerical solution of the idealised problem. 
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In this paper, an integral equation is derived and solved which verifies all of the results of 
Vanden-Broeck and Keller [21], and extends the range of solution to include the slightly 
surprising case in which the sink is situated above the interface level at large distances from 
the sink, but is drawing fluid only from the lower layer, shown by Hocking [7] and King and 
Bloor [17], to have solutions in the absence of gravity. This flow could arise if water was 
being withdrawn very quickly from a large tank, and the level of the interface away from the 
sink fell slowly to beneath the level of the sink. 

The problem is formulated in such a way that the results could apply equally to withdrawal 
from a fluid having a free surface (g '  is replaced by g in the Bernoulli equation), or to a 
source flow rather than a sink. It is not possible to distinguish between the latter two flow 
types, because of the quadratic dependence of the velocity in the boundary condition, i.e. 
the condition is independent  of the flow direction. 

A diagram is presented which summarises the known solutions with a cusped interface to 
the problem of withdrawal from a two layer fluid through a line sink. The limits on the 
stagnation point flows at low Froude number are now shown, since they are only known for 
the case of infinite depth. It is hoped that with further research the gaps in the diagram can 
be filled. 

2. Problem formulation and solution 

The steady, irrotational motion of an inviscid, incompressible fluid in the presence of gravity 
in two dimensions is to be examined. The fluid is of finite depth and has a density interface 
above a line sink. 

Let  z = x + iy be the physical plane, with the origin directly above the sink and at the level 
of the interface far away from the sink (see Fig. 1). The mathematical problem is to find a 
complex potential w = ~b(x, y) + i~(x,  y), which satisfies Laplace's equation (VZw = 0) with- 
in the flow domain (the lower layer), conditions of no flow across the solid boundaries and 
the interface, and the condition of constant pressure on the interface, provided by Bernoul- 
li's equation 

1 ( (  04~] 2 ( 03(/~ / 2 / 1 U2 
P=Pg'Y+-2  P \ \ ,gx /  + \ ,95 /  / = 2  P (2.1) 

on y = r/(x) where r/(x) is the equation of the interface shape, and U is the velocity of the 
fluid far from the sink. If we nondimensionalise with respect to the length (m2/18rr2g') 1/3 
and the velocity (2rng'/3rr) 1/3, where rn is the sink strength, then this equation becomes 

y q- ((O~4) 12-'[- ( O~)~2t = (~b)2 (2.2) 
\ \ a x e  \ a y /  / 

where h b is the depth of the fluid at large distances from the sink, the nondimensional flux 
into the sink is ~, and hence the velocity at large distances from the sink is rr/h b. Since the 
Bernoulli equation has a quadratic dependence upon the velocity, the equations are equally 
valid for a source flow, and the boundary conditions are formulated in this way. The flow is 
symmetric about x = 0, and consequently only the region x/> 0 is considered. 

To derive an integral equation for this problem we follow a similar procedure to that used 
in Hocking [7]. The transformation 
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(2.3) 

maps the infinite strip between ~0 = 0 and 6 = -Tr  in the w-plane to the lower half of the 
~'-plane. Without loss of generality we may choose to let w = 0 correspond to the cusp point, 
so that the free surface y = 0, ~b > 0, lies along the real ~'-axis where ~r I> 1. The sink lies at 
the origin in the ~'-plane, and the negative real axis corresponds to 6 = - T r  (see Fig. 2). 
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Fig. 2. Mapped planes used in the problem formulation; (a) the complex velocity potential w-plane, (b) the lower 
half ~r-plane, and (c) the physical z-plane. 
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We seek w by solving for 12(~ ' )=6(~ ' )+ i r (~ ' ) ,  defined in relation to the complex 
conjugate of the velocity field by 

w'(z(~)) = ( ~ )  e -ia(~) (2.4) 

The magnitude of the velocity at any point is then given by Iw'(z)[ = (rr/hb)e ~(~), and the 
angle any streamline makes with the horizontal is 6(~r). Thus, for cusp-like solutions, we 
require that 6 = 7r/2 at ( = 1 and 6---~ 0 as ~'---~ o~. 

The interface corresponds to the positive real ~'-axis for ~" > 1, and r- - )0  as ~'---~o0 to 
conserve mass. On the remainder of the real ~'-axis, which corresponds to the solid 
boundaries of the flow domain, the streamlines must be parallel to the walls, so that the 
condition that there be no flow normal to the solid boundaries is satisfied if we choose 6(~') 
to be the angle of the wall to the horizontal, i.e. 

I O i f - ~ <  sr < ~'B ; 
6(~ ' )=  -7 r /2  i f ~ ' B < ~ < 0 ;  

( 7r/2 if 0 < ~" ~< 1. 

The only singularities of the function f~(~') in the ~'-plane are those at the origin and at 
~" = ~'z, corresponding to the sink and the stagnation point on the bottom beneath the sink 
respectively. Both of these singularities can be shown to be weaker than a simple pole, so 
that Cauchy's Theorem can be applied to ~(~') on a path consisting of the real ~'-axis a 
semi-circle at I~'] = o~ in the lower half plane, and a circle of vanishing radius about the point 
~'. Hence, for ~m{~'} < 0  we have 

a ( ~ ) -  27ri ~0--~ d~'°' (2.5) 

since f~---~ 0 as I~'[---~. If we let ~m{C}---~0-, we obtain 

1 ~ f  6(~o) 
T ( ~ )  ~ - ;  _ _  

and 

6(~) = 1 ~+f  r((o) d~ ° (2.6) 

where the integrals are of Cauchy Principal Value form. 
Substituting the known values of 6(~') into the equation for r(~') gives 

1 ( (1 -- ~")( ~B -- ~') ) l f f  6(~'o) r(~') = ~ In ~2 + ~ ~ _ - ~  d~o. (2.7) 

The singularity at ff = 1 in (2.7) can be removed by noting that 

if( arcsin ~'o 1/2 1 ( ~ )  
~r ~'0- ~ d¢0 = ~ In , (2.8) 

and writing 6(~ ' )=  arcsin ~.-1/2 + 6~(~'), so that (2.7) becomes 
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r(~') = ~ In + --Tr ~ - - - ~  d~'°" (2.9) 

To this we must add the equation for constant pressure on the interface, which can be 
obtained by combining equations (2.2), (2.3) and (2.4) to give 

_£ hb c e-T(~O)sinf(sro) d~o+ e 2"(~)= (2.10) 

on 1 ~< ~" < ~. This equation can be differentiated, rearranged and integrated to give the 
more convenient form 

r(~') = ~ In 1 + --2~ "2 ~'0 dg], , (2.11) 

on 1 ~  < f f < ~ .  Combining (2.9) and (2.11) on the interface gives a nonlinear integral 
equation for 6(~') on 1 ~< ( <  oo. The value of 6 is known elsewhere on the boundary from 
the boundary conditions, and hence we can obtain r from (2.6). Using 6 and z, it is possible 
to integrate (2.4) to obtain the location of points on the interface. These may be written as 

hb (~ e-'(~°)cosS(~0) 
x ( ~ )  = x ( ~ * )  + - -  d~" 0 

J'~* ~o 

and 

h b f¢ e -'(¢°) s in 6 ( ~ o )  
y(  ~) = y(  ¢*) + - -  j ,  d~'o 71" ~'* ~'o 

(2.12) 

Since y-+O as g'--+ % the cusp depth is 

h c  = h-2 fJl ~ e-'(~°)sin 8(~r°) d~'o (2.13) 
~'0 ' 

the sink depth is 

hb f01 e-r(~°) h,  = h c + - -  dsro (2.14) 
~" ~'o ' 

and the base depth is 

hb fo ~B e -r(¢°) h b = h, + - -  - -  d(o. (2.15) 

3.  N u m e r i c a l  m e t h o d  

The nonlinear integral equation described by equations (2.9) and (2.11) has no closed-form 
solution, but can be solved by computing the integrals numerically at a set of discrete points 
and solving for 6 ( ( )  using Newton's iteration method. 
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Since e w = s r, e 6 = ~" on q, = 0, i.e. 4~ = In ~'. It is convenient to integrate with respect to ~b 
rather  than if, since this choice crowds the points near  the region of greatest  change in the 
~'-plane, i.e. near  the cusp point. The integral to infinity was truncated at some large number  
~', = e ~', and points were chosen at N + 1 equally spaced values of 4~, so that 0 = th0 < ~b~ < 
~ 2  < "  " " < (~U = ~Dt, with point spacing A~b = (~b u - ~b0)/N. The integral equation consisting 
of (2.9) and (2.11) was evaluated at the mesh points Cj, f o r j  = 1, 2 , . . . ,  N. If the last term 

of (2.7) is written as 

1 ¢' 6(~'0) d~0= 1 ¢' 6 ( ( o ) - 6 ( ; )  6 )ln\~__i__l/ (3.1) 
~ '  ~'0 - ~" 7r ~'o '~ 

then it is no longer singular at ~"-- ~'0 and can be integrated without difficulty. Cubic splines 
were used for all of the calculations in this paper.  

In order  to minimise the error  caused by the truncation of the integral at ~b,, 6 was 
!(a ~---1/2 assumed to decay like e -2 , i.e. as in the infinite Froude number  case (see [7] for 

example) ,  and an exact calculation was made to account for the reduction by fitting this 

function to the last value of 6, that is t~(t~N ). This also reduces the error in using (3.1) as ~" 

approaches ~',. 
The boundary  condition at ( = 1 gives 6 o = ~-/2, leaving N equations for the N unknown 

values of 6j, j = 1, 2 . . . .  , N. The value of ~'B is unknown,  however,  for a channel of given 
depth and to close the system we need another  equation. This is obtained by fixing the sink 
depth,  i.e. using (2.14). ~'(thi) can be calculated from the previous guess for 6(~bj), 

j = l , 2  . . . . .  U. 
This closed system of N + 1 nonlinear algebraic equations can be solved using Newton 's  

method.  Using a first guess for 6 given by the infinite Froude number  solution (Hocking,  
[7]), convergence to an error  of less than 10 -9 at the grid points was usually achieved within 
five iterations. The numerical values of sink and cusp depth converged to three figure 

accuracy with N = 160. 
In each run of the numerical scheme, the value of F was fixed and the value of hs/h b 

gradually decreased, using the previous solution for ~j as an initial guess, until the Newton 's  

method failed to converge. 
To compute  the waveless solutions with F < 1 obtained by Vanden-Broeck and Keller [21], 

it was necessary to make some minor alterations to the numerical scheme. Since for each 
value of F less than one a solution only exists for a single value of h~./h b, F was fixed and h b 
was allowed to vary, i.e. become an output  of the computations.  This in turn necessitated 
reducing the number  of variables by one (since the number  of equations has been reduced by 
one), and this was achieved by letting 8 N = a6 N_ 1. Numerical  experiments  showed the results 
to be independent  of the choice of a, in the range 0 < a < 1, and a value of a = ½ was used. 

4. Results 

The method described was used successfully to repeat  all of the work of Vanden-Broeck and 
Keller [21] to graphical accuracy. The branch of solution in which the interface contained a 
hump above the sink as the sink depth approached zero was successfully continued into the 
region where the sink rises above the level of the interface in the far field. An example of an 
interface shape for a flow of this type is shown in Fig. 3. There  did not appear  to be any limit 
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Fig. 3. Diagram showing the interface shape for a situation in which the sink is above the level of the interface away 
from the sink (F = 2 and hs/h b = -0.38). 

to such solutions as the Froude number  was increased, and in fact we know f rom Hocking [7] 
and King and Bloor  [17], that infinite Froude number  solutions exist for all of these 
geometries.  For each value of hs/h  b the lowest value of Froude number  at which cusped 
solutions were obtained was noted,  and the results are shown in Fig. 4. 

At tempts  were made to compute  solutions with a cusp for values of Froude number  less 
than unity, apart  f rom the waveless branch found by Vanden-Broeck and Keller [21], without 
success. This failure may be due to the presence of waves on the interface at large distances 
f rom the sink, as suggested by Vanden-Broeck and Keller [21], or it may be that no solutions 
with a cusp exist for Froude numbers  less than one. 

Figure 4 summarises  those solutions which are known of at the time of writing this paper.  
Solutions with a stagnation point for small values of Froude number  are not included since it 
is not known what the limiting value on their existence is, except in the infinite depth 
problem. Peregrine [18] suggested that the breakdown of such solutions might occur when a 
limiting configuration with a 120 degree angle at the stagnation point formed.  No sign of this 
type of flow was found by Hocking and Forbes [9] for the infinite depth case, al though 
preliminary results by Hocking [11] indicate their existence in the case of a layer of finite 
depth. 

Whilst it seems unlikely that the pa ramete r  range in which there are flows with a cusped 
interface would overlap with the range in which there are flows with a stagnation point,  it is 
possible if one flow type were to correspond to a sink flow, and the other to a source flow. 
An added complication to this is the fact that there appear  to be two branches of solution in 
which the flow has a cusp shape, and it is possible that one of these might occur for a sink 
and the other for a source. The solutions with hs/h  b < 0 look more  realistic for a source flow, 
yet mathematical ly they are possible for a sink flow as well. There  is no way of differentiat- 
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Fig. 4. Regions in the parameter  space in which solutions with a cusp have been computed.  Stagnation point 
solutions exist in the region F <  1, but  the bounds  on them,  except in the case hs/h b = O, are unknown,  and 
consequent ly  they are now shown. 

ing between the source and sink using the formulation presented here, and consequently this 
issue must remain unresolved for the moment.  Work is continuing to complete Fig. 4 for all 
flow types. 
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